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Abstract. The Lorentz Integral Transform approach allows microscopic calculations of electromagnetic
reaction cross-sections without explicit knowledge of final-state wave functions. The necessary inversion of
the transform has to be treated with great care, since it constitutes a so-called ill-posed problem. In this
work new inversion techniques for the Lorentz Integral Transform are introduced. It is shown that they
all contain a regularization scheme, which is necessary to overcome the ill-posed problem. In addition, it
is illustrated that the new techniques have a much broader range of application than the present standard
inversion method of the Lorentz Integral Transform.

PACS. 25.30.-c Lepton-induced reactions – 25.30.Fj Inelastic electron scattering to continuum – 25.20.Dc
Photon absorption and scattering – 02.30.Uu Integral transforms

1 Introduction

About a decade ago the Lorentz Integral Transform (LIT)
method has been proposed in order to perform ab initio
calculations of electroweak reactions with nuclei into the
continuum [1]. The great advantage of the method lies in
the fact that a calculation of continuum wave functions
is not necessary. Indeed, the LIT approach reduces a con-
tinuum state problem to a bound-state–like problem and
thus it is sufficient to use bound-state methods. Hence, it
is not surprising that the LIT method has been applied to
microscopic calculations of quite a few electroweak cross-
sections of various nuclei ranging as A = 2–7: inclusive
electron scattering (see, e.g., [2,3]), total photoabsorption
cross-sections (see, e.g., [4–6]), exclusive electromagnetic
reactions [7,8], photomeson production [9], and weak pro-
cesses [10]. The list of application shows that the LIT ap-
proach has proven to be an important progress opening
up the possibility to carry out microscopic calculations not
only for reactions of classical few-body systems (deuteron,
three-body nuclei), but also for reactions of more complex
nuclei.

The LIT method proceeds in two steps. First, one
calculates an integral transform of the searched function
R(ω) with a Lorentzian-shape kernel:

L(σR, σI) =

∫
dω

R(ω)

(ω − σR)2 + σ2I
, σR , σI > 0 . (1)
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Then, in a second step, one inverts the obtained integral
transform. The inversion, however, is in principle an ill-
posed problem and the resulting consequences were al-
ready discussed in [11]. In order to introduce the reader to
the problem, we summarize the main points of that discus-
sion. The inversion of (1) is unstable with respect to high-
frequency oscillations Ω. Adding such a high-frequency
term ∆ΩR(ω) to R(ω) leads to an additional ∆ΩL(σR, σI)
in the transform. With growing Ω on the one hand and a
constant non-negligible oscillation amplitude ∆ΩR on the
other hand, ∆ΩL becomes increasingly small and might
become even smaller than the size of errors in the cal-
culation. Thus, ∆ΩR could not be discriminated. If one
reduces the error in the calculation, one can push the non-
discriminated∆ΩR to higher and higher Ω. However, even
if the excluded frequency range is physically unimportant,
one cannot simply find a solution of the response by appli-
cation of the inverse operator, since the unphysical oscilla-
tions cannot be separated from the solution. As further ex-
plained in [11] one then has to use a regularization scheme
for the inversion in order to avoid such problems. There-
fore, a specific inversion method with a built-in regulariza-
tion was recommended. In fact this method has been used
in all the above-mentioned LIT calculations leading to
very safe inversion results. On the other hand, in all these
calculations the various LITs have i) a rather simple struc-
ture, where essentially only a single peak of R(ω) has to be
resolved or ii) a more complicated structure, which, how-
ever, could be subdivided into a sum of simply structured
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responses, where the various LITs have been inverted sep-
arately. Case ii) was already encountered in [1], where
the inclusive longitudinal deuteron electron response R(ω)
was calculated at a constant momentum transfer. There it
was necessary to separate out the Coulomb monopole and
quadrupole transitions, which lead to a shoulder of the
corresponding R(ω) at the break-up threshold, while the
rest of the response shows the typical quasi-elastic peak
structure. Obviously it would be advantageous to invert
the total LIT by just one inversion with a method appro-
priated for more complicated structures. In addition it is
not guaranteed that one can always make the above sub-
division into a sum of simply structured responses, e.g. in
case of two rather close peaks in the same multipole tran-
sition. In such cases the standard inversion method would
not be sufficiently precise.

The aim of the present paper is twofold. The main pur-
pose is the investigation of the problem of the inversion of
a more structured R(ω) and to introduce alternative in-
version methods. As already pointed out, the LIT method
reduces a continuum state problem to a bound-state–like
problem, which can be solved with typical bound-state
techniques. In recent years many different solutions for
the bound-state problem of nuclei with A > 3 have been
developed as illustrated, for example, in a rather recent
paper about the 4He ground-state solution with a realis-
tic nucleon-nucleon potential, where seven different theo-
retical methods were applied [12]. Many of these methods
could also be used for a LIT calculation and as a second
aim we want to show to potential future practitioners of
the LIT method that reliable inversion techniques exist
even in case of more structured response functions.

The paper is organized as follows. In sect. 2 we give
a brief outline of the LIT approach. The standard inver-
sion method and alternative approaches are described in
sect. 3. Results with the various inversion techniques are
discussed in sect. 4.

2 The Lorentz Integral Transform method

In this section we give a brief outline of the LIT technique
discussing, however, the approach for inclusive reactions
only. The calculation of exclusive reactions is somewhat
more complicated, but one proceeds in principle in a very
similar manner [7,8].

As pointed out in the introduction the starting point
of the LIT method [1] is the calculation of the integral
transform of R(ω) given in eq. (1). The function R de-
pends on the internal excitation energy ω = Ef − E0 of a
given particle system and contains information about the
transition of the system from the ground state |Ψ0〉, with
energy E0, to the final states |Ψf〉, with energy Ef , induced
by an external probe. In case of an inclusive reaction R(ω)
denotes the response function

R(ω) =

∫
dΨf |〈Ψf |Ô|Ψ0〉|2δ(Ef − E0 − ω) , (2)

where Ô is a transition operator which characterizes the
specific process under consideration. The response func-

tion and in principle also the LIT are observable quan-
tities. However, in experiment R(ω) can be determined
more directly, while L(σR, σI) is only accessible via the
explicit integration (1) of an experimentally over a suf-
ficiently large ω-range determined R(ω). Thus, also in a
theoretical calculation it is preferable to eventually deter-
mine R(ω). The key point of the LIT method is nonethe-
less a direct calculation of L(σR, σI), i.e. without explicit
knowledge of R(ω). Only in a second step R is obtained
from the inversion of the transform. The great advantage
of the method lies in the fact that the generally very com-
plicated calculation of final-state wave functions |Ψf〉 can
be avoided, as will be discussed below. On the contrary, a
conventional calculation of R(ω) can only be carried out
with the explicit knowledge of |Ψf〉.

Given a Hamiltonian H of the particle system under
consideration, one may use the completeness of the eigen-
states of H to show that L(σR, σI) is determined via the
following differential equation [1]:

(H − E0 − σ∗)|Ψ̃〉 = Ô|Ψ0〉 (3)

with

σ = σR + iσI . (4)

Since H has a real eigenvalue spectrum the corresponding
homogeneous differential equation has only the trivial so-
lution. Thus, the solution of (3) is unique. This solution
leads directly to the transform, in fact one finds

L(σR, σI) = 〈Ψ̃ |Ψ̃〉 . (5)

Different from a Schrödinger equation at positive energies,
one has a very simple boundary condition for the solution
of (3). Due to the localized source on the right-hand side

of (3) and because σ is complex, Ψ̃ vanishes at large dis-
tances similar to a bound-state wave function. Therefore,
one can apply similar techniques as for the calculation of
a bound-state wave function. It is evident that the much
more complicated continuum state problem is completely
avoided by the LIT method.

3 Inversion methods for the Lorentz Integral
Transform

In order to invert the LIT, one has to calculate L(σR, σI)
for a set of σR values at fixed σI > 0. If one wants to deter-
mine R(ω) in a range ωmin ≤ ω ≤ ωmax, one should choose
σR in the interval ωmin − σI ≤ σR ≤ ωmax + σI. For such
σR values the kernel in (1) takes a resonant form with the
width determined by σI. The principal difficulties of the
LIT inversion were already discussed in the introduction,
hence in the following subsections we directly describe the
standard LIT inversion method (sect. 3.1) and the new in-
version approaches (sects. 3.2-3.4).
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3.1 Inversion with a set of basis functions

The present standard LIT inversion method consists in
the following ansatz for the response function:

R(ω′) =

N∑

n=1

cnχn(ω
′, αi) (6)

with ω′ = ω−ωth, where ωth is the threshold energy for the
break-up into the continuum. The χn are given functions
with nonlinear parameters αi. A basis set frequently used
in the LIT calculations of [1–11] is

χn(ω, αi) = ωα1 exp
(
− α2
nω

)
. (7)

In addition, also possible information on narrow levels,
like, e.g., elastic transitions, could be incorporated easily
into the set χn.

Substituting such an expansion into the right-hand
side of (1), one obtains

L(σR, σI) =

N∑

n=1

cnχ̃n(σR, σI, αi) , (8)

where

χ̃n(σR, σI, αi) =

∫ ∞

0

dω′
χn(ω

′, αi)

(ω′ − σR)2 + σ2I
. (9)

For given αi the linear parameters cn are determined
from a best fit of L(σR, σI) of eq. (8) to the calculated
L(σR, σI) of eq. (5) for a number of σR points much larger
than N . If one takes the basis set (7), one should vary
the nonlinear parameter α2 in a rather large range, while
one can determine α1 from the possibly known threshold
behaviour of R or one can vary α1 within a reasonable
range.

For any values of N , α1, and α2, the overall best fit is
selected and then the procedure is repeated for N = N+1
till a stability of the inverted response is obtained and
taken as inversion result. A further increase ofN will even-
tually reach a point, where the inversion becomes unstable
leading typically to random oscillations. The reason is that
L(σR, σI) of eq. (8) is not determined precisely enough so
that a randomly oscillating R(ω) leads to a better fit than
the true response. It is evident that the number of func-
tions N plays the role of a regularization parameter and
has to be chosen within the above-mentioned stability re-
gion. Normally, such a stability region is reached without
greater problems; however, it can in principle happen that
one does not find a stable result. Then one can either try
to improve the precision of the calculated L(σR, σI) or use
different basis sets. In case that the response exhibits an
unexpected structure it is useful to decrease the parameter
σI in order to have a better resolution in the transform.

We should mention that the completeness of the basis
set χn is not really relevant. In fact any basis set is only
used up to a relatively low value of N . Information which

ϕ (x)

x

−4 −2 0                    2                     4
−0.5

0.0

0.5

1.0

Fig. 1. Mexican-hat wavelet (eq. (10)).

can be parametrized only via χn with n > N is lost any-
way. Therefore, it is important to work with a basis set,
where a relatively small N leads to a high-quality result
of R(ω). Because of the variation of the nonlinear param-
eters αi of χn, many different basis sets are used and it is
normally no problem to find a proper basis set.

As already pointed out, the standard LIT inversion
method leads to high-precision results in case of simply
structured response functions, but can have problems in
case of more complicated structures. If one considers, how-
ever, just the low-energy part of the response, the stan-
dard method is very reliable. This is due to the fact that
the break-up threshold ωth is directly incorporated in the
inversion (R(ω) = 0 for ω ≤ ωth) and also a known low-
energy behaviour can be directly implemented (e.g. by
the parameter α1 in (7)). In addition, the inversion can
be restricted to a small energy interval above threshold
avoiding problems arising from structures at higher ener-
gies (see also [13]).

3.2 Inversion with wavelets

The inversion with wavelets is formally very similar to
the inversion with a set of basis functions described in the
preceding subsection. One starts from the same expansion
(6), but one uses wavelets instead of the basis functions
χn. Here we will take the Mexican-hat wavelet

ϕ(x) = (1− x2) exp

(
−x

2

2

)
, (10)

which is shown in fig. 1. We expand R(ω) in the range
ωth ≤ ω ≤ ωmax as follows:

R(ω) =
M∑

m=0

Nm∑

n=1

cm,nϕm,n(ω, α) (11)

with

ϕm,n(ω, α) = ϕ

(
α
ω − ωm,n

2m

)
, (12)

where α is a nonlinear parameter and the Nm grid points
ωm,n are equally distributed:

ωm,n = n(ωmax − ωth)/(Nm + 1) . (13)
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Table 1. M and Nm values used for the wavelet inversion of sect. 4.

M = 0

N0 15 31 63 127 255

M = 1

N0 7 15 31 63 127 255 15 31 63 127 255
N1 7 15 31 63 127 255 7 15 31 63 127

M = 2

N0 7 15 31 63 127 31 63 127 255
N1 7 15 31 63 127 15 31 63 127
N2 7 15 31 63 127 7 15 31 63

Such an expansion leads to the following LIT:

L(σR, σI) =

M∑

m=0

Nm∑

n=1

cm,nϕ̃m,n(σR, σI, α) (14)

with

ϕ̃m,n(σR, σI, α) =

∫ ∞

ωth

dω
ϕm,n(ω, α)

(ω − σR)2 + σ2I
. (15)

The wavelets ϕm,n are strongly localized functions about
ω = ωm,n in contrast to the basis functions χn in sect. 3.1,
which generally are considerably different from zero over
a rather large ω-range. The widths of the wavelets can
be modified with the parameter α. In addition, with the
parameterM one can choose the presence of various scales
of wavelets. Because of these wavelet characteristics one
easily understands that they are much more appropriate
to represent complicated structure of R(ω) than the basis
functions χn of the previous subsection.

For the actual inversion problems discussed in the next
section we use up to three different wavelet scales and var-
ious values for the Nm sets (see table 1); in addition, we
include an additional basis function ϕ0, namely a constant
(ϕ0 = c0). For any of the 25 Nm sets of table 1 we pro-
ceed as follows. The nonlinear parameter α is varied over
a wide range and for any value of α a best fit is performed
leading to the determination of the linear parameters cm,n.
For any Nm set the overall best fit is then chosen. Of these
25 inversion results we choose again the overall best fit. In
case that unrealistic oscillations are present in the inver-
sion, the next best inversion result is taken. Of course such
a procedure is nothing else than a regularization scheme.

3.3 Fridman approach applied to the LIT inversion

The following method to invert the Lorentz Integral Trans-
formation is based on the approach of V.M. Fridman [14].
This method solves by iteration the Fredholm integral
equation of first order

F (x) =

∫ b

a

dy K(x, y) f(y) , (16)

which has a solution and converges in the Hilbert space of
square integrable real functions on [a, b] (L2(a, b)) if the

kernel K is strictly positive definite and symmetric. The
iterative equation is given by

fl+1(x) = fl(x) + λ

[
F (x)−

∫ b

a

dy K(x, y) fl(y)

]
, l ∈ N0

(17)
with f0 ∈ L2(a, b) and 0 < λ < 2λ1, where λ1 is the
smallest characteristic number of K. Using the spectral
theorem it is evident that the iteration of eq. (17) diverges
if at least one eigenvalue of K is in ]−∞, 0].

To apply this method to the inversion of the Lorentz
Integral Transform

L(σR, σI) =

∫ ∞

ωth

dωK(σR, σI, ω)R(ω) , (18)

K(σR, σI, ω) =
1

(ω − σR)2 + σ2I
, σI > 0

one has to discretize the integration. In practice, the in-
tegration in eq. (18) ranges from ωth to ωmax + σI, since
contributions beyond ωmax + σI are of minor importance.
The numerical integration is done using the trapezoidal
rule:

∫ b

a

dx f(x) =

n∑

i=0

wi f(xi) , h =
b− a
n

, (19)

w0 = wn =
h

2
, wi = h , i ∈ {1, . . . , n− 1} ,

xi = a+ h i , i ∈ {0, . . . , n} .

Discretization of (18) replaces the integral kernel K by a
finite matrix, which is no longer symmetric. Therefore, the
iterative equation has to be symmetrized:

Rl+1(xi) = Rl(xi) + λ


wiL(xi, σI)−

n∑

j=0

K
(σI)
ij Rl(xj)


 ,

(20)

K
(σI)
ij =

wiwj
(xi − xj)2 + σ2I

←− K(xi, σI, xj) , (21)

where σR and ω lie on the same grid (xi). We do not prove

that K
(σI)
ij is strictly positive definite, since the algorithm
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has to diverge if this is not the case and we have to check
the convergence numerically anyway.

The iteration is started with the initial function

R0(x) =
σI
π
L(x, σI) , (22)

which is motivated by the following definition of the Dirac-
delta-function:

δ(x) = lim
σI→0

σI
π

1

x2 + σ2I
. (23)

Let us remind that extracting R using the limit σI → 0,
i.e.

R(σR) = lim
σI→0

σI
π
L(σR, σI)

= lim
σI→0

σI
π

∫ ∞

0

dωK(σR, σI, ω)R(ω) , (24)

is numerically unstable.
The smallest characteristic number of the integral ker-

nel K is the inverse of the largest eigenvalue µ1 of (K
(σI)
ij ).

In this work we have used λ = 1
µ1

. This value is not opti-

mized. The larger λ is, the faster the algorithm will con-
verge, but the procedure will also become more unstable.

Under real conditions one does not know the solution
of the integral equation. One has to compare the “input”
Lorentz L with the LIT of the actual result for Rl. The
relative error at every grid point

εl(xi) =

∑n
j=0 wj K(xi, σI, xj)Rl(xj)− L(xi, σI)

L(xi, σI)
(25)

after l iterations and the mean square sum of εl(xi) at
every grid point

El =
1

n2

n∑

i=0

|εl(xi)|2 (26)

is used to check the quality of the iterated solution Rl

after l recursions. We remind here that this problem is
ill-posed and therefore the solution is unstable under per-
turbation of the input data. With increasing number of
iterations the solution will become more and more unsta-
ble. Therefore, one has always to check whether the result
Rl is numerically still stable, i.e. free of unphysical oscilla-
tions. Solving ill-posed problems requires a regularization
scheme. This is naturally provided by this method through
the grid (xi).

Let us remark at this point that the trapezoidal rule
(eq. (19)) has the advantage that all information enter-
ing the inversion process has the same weight except at
the boundaries and it has a constant grid gap, which pro-
vides a constant regularization over the whole integration
region. One could also have used the Euler-McLaurin mid-
point rule with constant weights and grid gaps h where K
of eq. (21) becomes a symmetric Toeplitz matrix with the
scaling parameter σI/h. This integration method has prac-
tically no advantage over the trapezoidal rule. Considering

the ratio σI/h it is easy to understand that for sufficiently
small σI/h the kernel K may not be any more positive def-
inite and, in addition, numerical difficulties will arise as
also for large σI/h. In contrast, a Gauss-Legendre integra-
tion grid has smaller grid gaps at the boundaries than in
the center of the integration interval leading to a weaker
regularization at the boundaries and likely causing a lower
quality of the inversion close to threshold. In addition, the
integration kernelK (eq. (21)) will become more easily nu-
merically singular for the case in which L is given on a grid
with many points, i.e. more than about 50 grid points. On
the other hand, if L is given on a sparse grid, the Gauss-
Legendre integration is preferred, since it provides a more
precise integration for the same amount of grid points than
formula (19). For such a case the mentioned disadvantages
of the Gauss-Legendre grid regarding regularization and
numerical singularity are not so important any more.

The iteration (20) is stopped if El is smaller than
2.5 · 10−16, if El or maxi∈{0,1,...,n}{εl(xi)} is increasing or
unphysical oscillations arise in the solution. We allow at
first some “free” iteration steps, depending on the quality
of the input data, before we check if the iteration has to
be terminated. This is necessary, since in the first itera-
tions the errors El or maxi∈{0,1,...,n}{εl(xi)} may increase
temporarily due to large initial changes in Rl.

3.4 Inversion using Banach’s fixpoint theorem

Let us first consider notations and conventions used in this
subsection. We are working in the Hilbert space L2 of the
square integrable real functions R(ω) ≡ 〈ω|R〉 with real
arguments ω which fulfill

∫
dω |ω〉〈ω| = 1 . (27)

The scalar product and the norm are defined as usual:

〈R1|R2〉 :=
∫ ∞

−∞

dω 〈R1|ω〉〈ω|R2〉 ≡
∫ ∞

−∞

dωR1(ω)R2(ω) ,

(28)
and

||R|| :=
√
〈R|R〉 <∞ . (29)

For a fixed σI > 0, we are defining the Lorentz integration

operator L̂(σI) (LIT) in accordance with (1) as follows:

〈ω|L̂(σI)|R〉 ≡ L(ω, σI) :=

∫
dω′

1

(ω − ω′)2 + σ2I
R(ω′) ,

(30)
where in general, if not noted differently, the upper and
lower limit in the integrals is ∞ and −∞, respectively.
For the inversion method proposed in this subsection, let
us introduce for a fixed Lorentzian L(ω, σI) and a fixed
σI > 0 the following mapping acting on an arbitrary func-
tion R1 ∈ L2:

〈ω|T̂ (σI, L)|R1〉 =: T̂ (σI, L)(R1(ω)) =

σI
π
L(ω, σI)−

σI
π

∫
dω′

R1(ω
′)−R1(ω)

(ω′ − ω)2 + σ2I
. (31)
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As will be shown in appendix A.1, this mapping has
as fixpoint just the desired response function R(ω) which
creates via (30) the input Lorentzian L(ω, σI):

T̂ (σI, L)(R(ω)) = R(ω) ↔

R(ω) =
σI
π
L(ω, σI)−

σI
π

∫
dω′

R(ω′)−R(ω)
(ω′ − ω)2 + σ2I

. (32)

Now, in appendix A.2, we will prove with the help of
Banach’s fixpoint theorem that there exists an ε > 0 so
that for 0 < σI < ε the series (n ≥ 0, R(0) ∈ L2 arbitrary)

R(n+1)(ω) := T̂ (σI, L)
(
R(n)(ω)

)
(33)

has a unique fixpoint, which is therefore just the searched
response R(ω):

R(n)(ω) −→ Rfix(ω) ≡ R(ω) for n→∞ , 0 < σI < ε .
(34)

This method works therefore as follows: For a given
Lorentzian L(ω, σI) with σI sufficiently small, we choose
some arbitrary starting function R(0) (in our practical ap-
plications, we have taken always R(0) = 0 for the sake of
simplicity) and then calculate the series (33) till we have
reached convergence. The found fixpoint function Rfix is
then identical with the desired response function R. This
method is therefore completely parameter free and does
not need any suitable basic functions.

In the version discussed so far, this approach has how-
ever one serious drawback. Due to the iterative procedure,
it is obvious that the fixpoint Rfix is a C∞ function, i.e.
differentiable up to infinite order. In other words, this
method is strictly valid only for response functions which
are C∞. The physical response function, however, is not
analytic at the threshold energy ωth of the considered in-
clusive reaction and is therefore not C∞. In order to get
rid of this problem, one has to modify slightly the above-
discussed algorithm. Instead of the range ] − ∞,∞[, all
occurring functions L,R, . . . are now only defined on the
interval [a, b], where a ≡ ωth. The upper value b should
be in principle ∞. However, in practical applications, the
Lorentzian L, which serves as an input in the algorithm,
is known only in some finite range of ω, so that in practice
b is not infinite, but still “large”.

Instead of (30) we have therefore to consider

L(a,b)(ω, σI) :=

∫ b

a

dω′
1

(ω − ω′)2 + σ2I
R(ω′) (35)

and the counterpart of the linear mapping (31) for finite
integrals becomes then

T̂(a,b)(σI, L)(R1(ω)) =
σI

α(a,b)(ω)
L(a,b)(ω, σI)

− σI
α(a,b)(ω)

∫ b

a

dω′
R1(ω

′)−R1(ω)

(ω′ − ω)2 + σ2I
(36)

with the function

α(a,b)(ω) = arctan

(
ω − a
σI

)
+ arctan

(
b− ω
σI

)
. (37)

The series

R
(n+1)
(a,b) (ω) := T̂(a,b)

(
σI, L

R
(a,b)

)(
R
(n)
(a,b)(ω)

)
(38)

has again, as will be shown in appendix A.3, the desired re-
sponse function R as unique fixpoint for sufficiently small
σI. So the method works also for functions which are de-
fined only on a finite range.

Summarizing, we have proven that this method allows
for not too large σI a unique determination of the response
function R for a given Lorentzian L. As discussed in sect. 4
in detail, it may however happen in practice that L is not
very precisely known, containing, for example, oscillations
due to numerical uncertainties or approximations in its
explicit calculation. Therefore, similar to the Fridman ap-
proach, also in this method a sort of regularization has
to be used in order to avoid resulting unphysical oscilla-
tions in R. In practice, two numerical tools are used which
mutually supplement each other, leading both to a reduc-
tion of the numerical resolution. First of all, the number
of mesh points in the occurring integrals can be reduced
(in analogy to the Fridman method) and second, the total
number of iterations should be restricted, for example, by
choosing a suitable termination condition for El (26).

4 Discussion of results

In the following we apply the various inversion methods of
sect. 3 to two different cases. First we investigate the effi-
ciency of the regularization procedures implemented in the
various inversion methods. As test case we consider a real-
istic example, where L(σR, σI) is calculated from eqs. (3),
(5) without any knowledge of R(ω). To this end we take
L(σR, σI) from ref. [1], where the longitudinal response
function for inclusive electron scattering off the deuteron
at a momentum transfer of q2 = 5 fm−2 is considered. As
described in ref. [1], eq. (3) was solved in an approximate
way thus leading to an L(σR, σI) with a non-negligible
error margin. It is evident that for such a case a regular-
ization must be present in the inversion method otherwise
reasonable results cannot be obtained. Our second exam-
ple serves for a different test, namely to check the ability
of the various inversion methods to precisely reproduce re-
sponse functions with rather complicated structures. For
this high-precision check we take a test case, where the
response function R(ω) is known beforehand analytically,
and choose a function with a double-peak structure. Then
L(σR, σI) is calculated via eq. (1) with a rather high nu-
merical precision and, finally, the obtained LIT is inverted.

The LIT of our first case is illustrated in fig. 2. One
sees a pronounced peak at about 50 MeV and one notes
slight oscillations of the transform at higher energies. As
already mentioned, the LIT is taken from [1], where the
longitudinal response function RL(ω, q) for inclusive elec-
tron scattering off the deuteron at a momentum transfer
of q2 = 5 fm−2 is considered. In ref. [1] eq. (3) was solved
only approximately in order to work with a test case of
not too high numerical precision. For example, the visi-
ble high-energy oscillations of the LIT in fig. 2 are due
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Fig. 2. LIT of the first test case taken from [1].

to computational approximations. The solution of (3) was

obtained in [1] by putting Ψ̃(r) equal to zero at a neutron-
proton distance of r = 20 fm instead of using a more exact
asymptotic behaviour. Of course, in case of the deuteron
a more precise LIT could be calculated easily.

We would like to emphasize once again that in case
of such a not very precisely determined LIT, a proper
regularization must be built into the inversion method
otherwise reasonable results cannot be obtained. In [1]
the standard inversion method was used for the inversion
and problems were encountered, since the results exhib-
ited oscillations at lower energies. The problems arise from
Coulomb monopole (C0) and quadrupole (C2) transitions,
which lead to a low-energy shoulder in the response. As
will be discussed also later on, the standard inversion
method has difficulties to reproduce a more structured re-
sponse function. In [1] these problems could be overcome
by making separate inversions for the C0 and C2 LITs.

First we discuss the inversion results with the wavelet
method. Here we should mention that RL contains also an
elastic contribution. Thus it is necessary to introduce an
additional δ-shape basis functions which accounts for it.
This can be achieved easily and the inversion result leads
not only to the inelastic response function, but also to a
value of the elastic form factor at q2 = 5 fm−2. In principle
one could also calculate the elastic form factor separately
and then subtract its contribution from the LIT. In fig. 3
we show two inversion results. While the inversion with the
parameters M = 0 and N0 = 15 leads to a smooth curve,
one already finds strong unrealistic oscillations if N0 is in-
creased to 31. Even stronger oscillations are found for the
inversions with the other parameter values of table 1. It
shows that for the present example a rather low resolution,
i.e. a rather strong regularization, is necessary in order to
obtain an RL result which can be interpreted as realistic.

In contrast to the wavelet method, the Banach inver-
sion and the Fridman method are iterative methods. The
nature of the iterative inversion method is that with in-
creasing number of iterations the error El (eq. (26)) will
become smaller and smaller but the solution will become
more and more unstable. That means that the amplitudes
of unphysical oscillations will increase. In the following the
integration grid is used as regularization. Therefore, the
larger the grid gaps are the smaller the frequencies of the
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Fig. 3. Wavelet inversion results for the first test case with
M = 0 (full line: N0 = 15, dashed line: N0 = 31).
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Fig. 4. Fridman inversion results for the first test case (full
line: 20 grid points and 12 iterations, dashed line: 40 and 20,
dotted line: 40 and 120).

unphysical oscillations will be. In principle one could also
introduce a regularization operator and calculate the opti-
mal number of iterations depending on the desired error El
(eq. (26)). We did not follow this approach of regulariza-
tion since the grid-regularization works successfully as dis-
cussed in the following. To simplify the inversion process
the elastic contribution to the LIT, Lel = 0.0436/((E0 −
σR)

2 + σ2I )) with −E0 = EB = 2.2246MeV and σI =
10MeV [1], has been removed in both inversion methods.

In fig. 4 we illustrate exemplarily the procedure to
determine the inversion for the Fridman case. First the
number of iterations is fixed to 120 and the integration
is done on a grid with 40 points (dotted curve: 40 pts,
120 its). This curve shows still quite large unphysical os-
cillations although the integration grid consists of only
40 grid points. By further reducing the amount of itera-
tions to 20 (dashed curve: 40 pts, 20 its) the amplitude of
the unphysical oscillations is reduced. Then we lower the
amount of grid points till a smooth curve is obtained. At
that point a strong regularization is introduced. To im-
prove the threshold region, the grid (xi) is split up into
two grids, a small inner grid using the trapezoidal rule
(eq. (19)) and an outer grid using a Gauss-Legendre inte-
gration grid. Finally a systematic variation of the number
of grid points, grid boundaries and the number of iter-
ations yields a parameter set where the result is stable
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Fig. 5. Final inversion results with the three new methods
for the first test case are shown (upper panel; full line: origi-
nal response function, dashed line: wavelet, dash-dotted line:
Fridman, dotted line: Banach) along with their relative error
(lower panel).

under small changes of these parameters. The result shown
figs. 4 and 5 is obtained with 12 iterations where 6 points
are used for the inner grid [0, 30] MeV and 14 points for
the outer one ]30, 197] MeV.

A similar pattern occurs also for the Banach method.
Concerning the chosen resolution, we use here 24 Gaus-
sian mesh points for the evaluation of the integrals and
stop the iteration process for El < 10−5. In contrast, if
the Lorentzian is numerically better determined, like in
our second example discussed below, typically a couple of
hundreds of mesh points and termination conditions like
El < 10−15 (or even less) can be used for small σI without
producing unphysical numerical oscillations in the result-
ing response R.

Our deuteron example has the great advantage that
R(ω) can also be determined directly from eq. (2), since
two-nucleon continuum wave functions can be calculated
without problems. In fig. 5 we compare this response
function, which is also taken from [1], to those from the
three inversion methods. It is evident that, in spite of the
strong regularization, the inversion results lead to an over-
all correct description and form a kind of error band. The
wavelet and Banach inversions oscillate around the true
response with an error of less than 2 or 3% in the peak
region. The Fridman inversion exhibits a different pattern,
but also describes the peak region quite well. The relative
errors become somewhat larger at lower and higher ener-
gies. Nonetheless, in comparison to the standard inversion
method, which leads to very strong low-energy oscillations
(see [1]), our present results have a much smoother and
more correct form at lower energies. It is important to
note that errors of the inversion results are due to a not
sufficiently precisely determined LIT. In fact, as shown in
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Fig. 6. Double-peaked response function of the second test
case.

ref. [1], the error of the LIT amounts up to 1.5% in the
peak region and up to about 4% beyond 120 MeV. One
sees that an error in the transform leads to an error of sim-
ilar size in the inversion. Thus, more precise results could
be obtained by calculating the LIT with a higher precision.
However, even with the present precision the low-energy
shoulder could be described much better if one makes sep-
arate inversions for the C0 and C2 transition strength as
was done in ref. [1].

After our first example, which checked the proper im-
plementation of the regularization into the various inver-
sion methods, we turn to our high-precision test, where
we take the following response:

R(ω) =
1√
2π

(
1− exp(βω2)

)

×
(
c1 exp(γ1(ω − ω1)2) + c2 exp(γ2(ω − ω2)2)

)
,

(39)

β = −0.01MeV−2 ,

c1 =
MeV−1

29
, γ1 =

MeV−2

2 · 42 , ω1 = 20MeV ,

c2 =
MeV−1

20
, γ2 =

MeV−2

2 · 202 , ω2 = 50MeV .

In fig. 6 we show the chosen R(ω) up to ω = 120 MeV.
The response function exhibits two peaks, one at ω =
20 MeV and the second at ω = 50 MeV. Both peaks have
the same heights, but different widths. The corresponding
LITs with σI = 5, 10, 20, and 40 MeV are illustrated in
fig. 7. It is evident that only the smallest value of σI leads
also to two peaks for the transform, while the information
about the two separate peaks is more and more smeared
out with increasing σI.

In order to invert the LIT we calculate L(σR, σI) for
each of the four σI values from σR = −10 MeV to
σR = 210 MeV at 441 equidistant grid points. It is instruc-
tive to use the standard LIT inversion method, described
in sect. 3.1, for the transform with the highest resolution
(σI = 5 MeV). In fig. 8 it is shown that the result is not of
a very high quality. There are low-energy oscillations and
the two peaks are not well reproduced. One sees that the
standard inversion method has difficulties to reproduce a
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Fig. 7. LIT of the double-peaked response function with dif-
ferent σI (curves for σI = 10, 20 and 40 MeV are scaled by
factors of 2, 4 and 8, respectively).
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Fig. 8. Result for σI = 5 MeV (dashed line) obtained with
the standard method (sect. 3.1) for the second test case and
the original double-peaked response function (full line).

more structured response function like our present double-
peak example. The reason for the problem are the basis
functions. They have a too large extension in the ω-space,
therefore oscillations are introduced easily. In case of a
more simpler structure like a single-peak response such dif-
ficulties do not appear (see, e.g., [1]). We do not show re-
sults with the standard inversion method for larger values
of σI. As one may expect, they lead to even worse results.

It is obvious that alternative inversion methods are
needed in case of more structured response functions. In
fact the three inversion techniques described in sects. 3.2-
3.4 lead to much better results. For σI = 5 and 10 MeV
one obtains results so close to the true R that in fig. 6
they would all appear identical to the true response func-
tion. Thus, in fig. 9 we show the relative errors of R in an
ω-range, where R(ω) is not too close to 0. It is evident
that the relative errors are very small: generally much
less than 0.001 for σI = 5 MeV and less than 0.01 for
σI = 10 MeV, only close to the low- and high-energy bor-
ders, where R approaches 0 the error can become a bit
larger. Here we would like to point out that the thresh-
old region can also be inverted with greater care (see final
paragraph of sect. 3.1). In figs. 10 and 11 we illustrate the
inversion results for the two higher σI values. One sees that
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Fig. 9. Relative error of the inversion results for the second
test case obtained with the new methods (full line: wavelet,
crosses: Fridman, points: Banach) for σI = 5 MeV (upper
panel) and for σI = 10 MeV (lower panel).
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Fig. 10. Results of the three new inversion methods (full line:
original response function, dashed line: wavelet, dash-dotted
line: Fridman, dotted line: Banach) for the second test case
with σI = 20 MeV are shown (upper panel) along with their
relative error (lower panel; full line: wavelet, crosses: Fridman
scaled by a factor of 0.2, points: Banach).

one still obtains rather good results with σI = 20 MeV,
particularly with wavelet and Banach’s fixpoint theorem
inversion techniques. With σI = 40 MeV the inversion re-
sults become worse. The shapes of the two peaks are not
very well reproduced, but at least the peaks are recognized
as two separate structures and also the high-energy tail is
still rather well described. However, it is obvious that for
the present case a σI value of 40 MeV is not sufficient to
have precise inversion results. On the other hand, with a
further increase of the numerical precisions in calculating
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Fig. 11. Results of the three new inversion methods (full line:
original response function, dashed line: wavelet, dash-dotted
line: Fridman, dotted line: Banach) for the second test case
with σI = 40 MeV are shown (upper panel) along with their
relative error (lower panel).

M = 2, N0 = 31, N1= 15, N2= 7
M = 0, N0 = 63

R
[M
e
V

−
1
]

ω [MeV]

120100806040200
−0.005

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Fig. 12. Wavelet inversion results for the second test case
(full line: M = 0, N0 = 31, dashed line: M = 2, N2 = 31,
N1 = 15, N2 = 7).

the transform and the inversions, which is nothing else
than a further reduction of the regularization, one could
have also for σI = 40 MeV much better results.

In the above example Fridman and Banach methods
lead to a single inversion result for a given σI, while
the wavelet technique leads for any set of values for M
and Nm (see table 1) to principally different inversion
results, in absence of unphysical oscillations they are of
course almost identical. For σI = 5, 10, and 20 MeV
the result with the best description of L(σR, σI) (sum of
quadratic errors) is taken (σI = 5 and 10 MeV:M = 2 and
N0 = N1 = N2 = 63, σI = 20 MeV: M = 2 and N0 = 63,
N1 = 31, N2 = 15). For σI = 40 MeV, however, the inver-
sion result with the smallest error shows strong and unre-
alistic oscillations (see fig. 12) and is thus discarded. Also
the 14 next best fits lead to similar unrealistic oscillations
showing that also for this case a rather strong regular-

ization is necessary. Only the 16th best result (M = 0,
N0 = 63) does not exhibit such an unrealistic pattern and
is therefore shown in fig. 11. Such strongly oscillating solu-
tions like that of fig. 12 can be identified easily as unreal-
istic, since a true response function has to be positive def-
inite and, in addition, it is difficult to imagine that a true
response can exhibit such a regular oscillation pattern.

We summarize our results as follows. The various
newly introduced inversion techniques for the Lorentz In-
tegral Transform contain a proper regularization method
and are thus able to treat the ill-posed inversion prob-
lem. In addition, all these techniques are capable to in-
vert also transforms of responses with rather complicated
structures with a very high precision. For such cases they
lead to considerably better inversion results than the stan-
dard LIT inversion method. Our results show that the
LIT approach is not restricted to treat cases where sim-
ple structures appear, but is suitable for many different
applications.

This work was supported by the Italian Ministry of University
and Research (COFIN 03) and by the Deutsche Forschungsge-
meinschaft (SFB 443).

Appendix A. Mathematical proofs
concerning the fixpoint method

Appendix A.1. Proof of (32)

In order to prove (32), let us consider the expression

B(ω, σI) := Im

∫
dω′

R(ω′)

ω′ − ω − iσI
, (A.1)

which can be rewritten in two different manners: First,
one has the identity

B(ω, σI) = Im

∫
dω′

R(ω′)(ω′ − ω + iσI)

(ω′ − ω)2 + σ2I
= σIL(ω, σI)

(A.2)
and second, one can write

B(ω, σI) = Im

∫
dω′

R(ω′)−R(ω)
ω′ − ω − iσI

+ Im

(
R(ω)

∫
dω′

1

ω′ − ω − iσI

)
. (A.3)

The second integral on the right-hand part of (A.3) can
be easily solved with the help of

a

π

∫ ∞

−∞

dx
1

x2 + a2
= 1 , a > 0 . (A.4)

Comparison of (A.3) and (A.2) yields then (32).
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Appendix A.2. Proof of the uniqueness of the
iteration procedure

In this appendix we prove that there exists an ε > 0 so that
for all σI < ε the series (33) converges uniquely against a
function Rfix which is identical with the desired response
R(ω).

For that purpose, let us introduce the difference

∆(n) := R−R(n) . (A.5)

Exploiting (31)-(33), the function ∆ fulfills

∆(n+1) := T ∆(n) (A.6)

with the linear mapping

T ∆(n)(ω) = −σI
π

∫
dω′

∆(n)(ω′)−∆(n)(ω)

(ω′ − ω)2 + σ2I
. (A.7)

Next, we will prove that T is —for sufficiently small
σI— a contractive linear mapping, i.e. there exists a con-
stant 0 < q < 1 so that

||T ∆(n)||2 ≡ ||∆(n+1)||2 ≤ q||∆(n)||2 . (A.8)

Proof: For the norm of ∆(n+1) we obtain

||∆(n+1)||2 =
∫

dω∆(n+1)(ω)∆(n+1)(ω) =

σ2I
π2

∫
dω

∫
dω′

∫
dω′′

(
∆(n)(ω′)−∆(n)(ω)

(ω′ − ω)2 + σ2I

)

×
(
∆(n)(ω′′)−∆(n)(ω)

(ω′′ − ω)2 + σ2I

)
, (A.9)

which can be rewritten as

||∆(n+1)||2 = σ2I
π2

∫
dω

∫
dω′

∫
dω′′

×
(

1

(ω′ − ω)2 + σ2I

)(
1

(ω′′ − ω)2 + σ2I

)

×
(
∆(n)(ω′)∆(n)(ω′′) +∆(n)(ω)∆(n)(ω)

−∆(n)(ω′)∆(n)(ω)−∆(n)(ω′′)∆(n)(ω)
)
. (A.10)

This expression can be simplified with the help of (A.4)
and with the identity (which can be easily proven using
the method of residues)

∫ ∞

−∞

dω

(
1

(ω′ − ω)2 + σ2I

)(
1

(ω′′ − ω)2 + σ2I

)
=

2π

σI

(
1

(ω′ − ω′′)2 + 4σ2I

)
(A.11)

as follows:

||∆(n+1)||2 = ||∆(n)||2 + 2σI
π
〈∆(n)|L̂(2σI)|∆(n)〉

−2σI
π
〈∆(n)|L̂(σI)|∆(n)〉 . (A.12)

For further exploitation, let us prove next the follow-
ing:

Lemma: There exists an ε > 0, so that for all σI < ε

2σI
π
〈∆(n)|L̂(2σI)|∆(n)〉 ≤ A(σI)〈∆(n)|∆(n)〉 , (A.13)

where the upper limit A(σI) for σI < ε fulfills the estimate

1− δ ≤ A ≤ 1 + δ, δ <
1

3
. (A.14)

Proof of the Lemma: Due to

lim
σI→∞

σI
π

1

(x− y)2 + σ2I
= δ(x− y) , (A.15)

the statement is obviously true for σI → 0 with

lim
σI→0

A(σI) = 1 . (A.16)

Because the LIT operator in (30) is depending analytically
on the parameter σI, the statement follows immediately.

With the help of the Lemma, one obtains for (A.12)
the following estimate:

||∆(n+1)||2 =

∣∣∣∣||∆
(n)||2 + 2σI

π
〈∆(n)|L̂(2σI)|∆(n)〉

−2σI
π
〈∆(n)|L̂(σI)|∆(n)〉

∣∣∣∣

≤ |1 + (1 + δ)− 2(1− δ)| ||∆(n)||2

= 3δ||∆(n)||2 . (A.17)

Due to

q := 3δ < 3
1

3
= 1 , (A.18)

the mapping ∆(n) → ∆(n+1) defined via (A.6) is therefore
for σI < ε contracting.

In consequence, we can now apply Banach’s fixpoint
theorem: It states that the series ∆(n) converges uniquely
against a fixpoint∆. Obviously, (A.6) is fulfilled by∆(n) =
0 for all n, so that, therefore,

∆(n) → ∆ = 0 (A.19)

and therefore, due to (A.5), R(n) → R uniquely.

Appendix A.3. Incorporation of correct threshold
behaviour of the response function

If the lower and the upper value of the integral (30) are
not any longer ±∞, but some finite values a and b, the
proofs presented in appendices A.1 and A.2 have to be
solely repeated where instead of the expression (A.4) its
counterpart for finite integrals

a

α(a,b)(ω)

∫ b

a

dx
1

x2 + a2
= 1 , a > 0 (A.20)
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has to be used (the function α is given in (37)). Therefore,
instead of (32) one has the identity

R(ω) =
σI

α(a,b)(ω)
L(ω, σI)

− σI
α(a,b)(ω)

∫ b

a

dω′
R(ω′)−R(ω)
(ω′ − ω)2 + σ2I

, (A.21)

which motivates therefore the mapping T̂(a,b)(σI, L) ac-
cording to (36).

The counterpart of the difference function (A.5) now
becomes

∆
(n+1)
(a,b) (ω) := R−R(n)

(a,b)

= − σI
α(a,b)(ω)

∫ b

a

dω′
∆
(n)
(a,b)(ω

′)−∆(n)
(a,b)(ω)

(ω′ − ω)2 + σ2I
.

(A.22)

The norm of this function

||∆(n+1)
(a,b) ||

2 =

∫ b

a

dω∆
(n+1)
(a,b) (ω)∆

(n+1)
(a,b) (ω)

=

∫ b

a

dω

∫ b

a

dω′
∫ b

a

dω′′

×
(

σI
α(a,b)(ω)

)2(
1

(ω′ − ω)2 + σ2I

)(
1

(ω′′ − ω)2 + σ2I

)

×
(
∆
(n)
(a,b)(ω

′)∆
(n)
(a,b)(ω

′′) +∆
(n)
(a,b)(ω)∆

(n)
(a,b)(ω)

−∆(n)
(a,b)(ω

′)∆
(n)
(a,b)(ω)−∆

(n)
(a,b)(ω

′′)∆
(n)
(a,b)(ω)

)
. (A.23)

is much more complicated to be handled than its coun-
terpart (A.10): Due to the finite limits in the integrals,
the method of residues cannot any longer be used.
Moreover, the constant factor π in (A.10) now turns into

the complicated function α(a,b)(ω) so that a simple rela-
tion like (A.12) is not any longer valid. However, recalling
the representation (A.15) of the δ-function as well as (for
arbitrary a, b; provided a < ω < b)

lim
σI→0

α(a,b)(ω) = π , (A.24)

it is obvious that for sufficiently small σI the influence of
the finite limits a and b in the integrals dies out so that

again the mapping ∆
(n)
(a,b) → ∆

(n+1)
(a,b) is a contractive one.
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